&

Tile Based Game
using FlashDevelop
-Part 1-

* Flash/ActionScript 3

e FlashDevelop

 Tile Based Engine

« Game Components Structure

* Rendering Tiles from 2D Array

* Flash is multimedia, software platform that can be played
and executed in Adobe Flash Player (wikipedia)

« Games on newgrounds and armorgames are most likely
made in Flash

 Most GCC games are made using Flash

 ActionScript 3 is an object-oriented language with
similarities to javascript and java

==
(.\.__:._'
.

* Free, open-source code editor for developing Flash
applications

* Pros (compared to Flash CS6)
+ Free (Flash Professional CS6 is $185 on amazon)
+ Similar to other IDE (eclipse, visual studio, etc.)

« Cons
- Lack of features (sprite sheet generation, timeline, etc.)

==
(.\.__:._'
.

 Tile Based Video Game is a form of video game where
the playing area is generated by laying out tiles adjacent
to one another in a grid (wikipedia)

* Pros:
+ reusable assets
+ easy level creation
+ simplifies collision detection

« Cons:
- object placement is usually restricted to grids
- outdated (probably won't see many console tile-based
games anymore like SNES)

€&~ GAME CREATION CLUB-TUTORIAL

Commercial Tile Based Games

&#########«»######«l‘&

Pokemon Old School Zelda Sim City 3000

 Download the template from here:
https://www.dropbox.com/sh/r9jcsrkexeytye4/XyDSAyKzgn

 Download “TileBasedTanks pt1.zip”

 After the tutorial, download “TileBasedTanks pt1 done.zip”
to make sure | didn't make any mistakes in the slides (sorry
I'm quite mistake prone)

https://www.dropbox.com/sh/r9jcsrkexeytye4/XyDSAyKzgn

)

13
u

(

LevelSelection

Main
1
I
GameManager

p—

l

GameScreen

GameObject

_~ |ImgLoader
Preloader <

"~ Dataloader

“ SoundLoader

TiktleScreen

* In today's tutorial, we will
be filling in codes for
Main, GameManager,
and GameScreen

e Don't worry about the
preloader since | have
already implemented

)

A
\

(

* From the right panel, open “src/Main.as”
* Then in “private function init”, add this code:

stage.addEventListener(Event.ENTER FRAME,loop);

» The function that is passed as an argument (loop) will be called each
frame. Since our game will run at 30 fps, loop() will be called 30 times
per second

e Now under function init(), create a new funtion:

private function loop(e:Event):void {

}

==
(.\.__:._'
.

In “Game/GameManager.as”, create a new instance variable: private
var gameScreen:GameScreen;
This will create an instance variable of type GameScreen

Then add two more instance variables:

private var Renderer:BitmapData;
private var bitmap:Bitmap;

Then instantiate the instance variables in “public function
GameManager”:

Renderer = new BitmapData(stageW, stageH, false, 0x000000);
bitmap = new Bitmap(Renderer);
gameScreen = new GameScreen(stageW, stageH);

==
(.\.__:._'
.

« By using bitmapData and bitmap, we are using a rendering technique
called blitting, where we manipulate single bitmapData to render assets
to stage. So we draw the image in memory first before actually drawing

to stage.

* Now to actually manipulate the bitmapData, in function Render():

private function Render():void {

Renderer.lock();
Renderer.fillRect(Renderer.rect, OXFFFFFF);

gameScreen.Render(Renderer);
Renderer.unlock();

Now return to “main.as” and create an instance of GameManager:
private var gm:GameManager;
Then instantiate it in init():

*** changed from stage.stageWidth, stage.stageHeight to 600,600 (google chrome
changes stage size for some reason when | do stageWidth and stageHeight) ***

gm = new GameManager(600, 600);
addChild(gm.bitmap);

addChild(gm.bitmap) adds the bitmap to stage. It won't show up on stage unless we do
SO.

Now in loop(), add:

gm.Render();

)

A
\

(

* This class will handle the actual gameplay
e |In “Game/Screen/GameScreen.as”, create instance variables:
private var tiles:Array;
private var tileSize:int = 40;
private var depth:int = 5;
private var currentLevel:int = 1;

« Now under function GameScreen():

tiles = DataAccessor.getStage(currentLevel).tiles;

==
(.\.__:._'
—

* This is a class that | created to access data loaded from data.json,
where all the information about tanks and stages are located

» DataAccessor.getStage(id) will give you access to stage with id of id.

DataAccessor.getStage(id).tiles will give you access to the tile data of
the stage

* You can manipulate tanks and stages by editing “bin/lib/data/data.json”

)

A
|

(

» * change the parameter of Render() in GameScreen.as to
Render(Renderer:BitmapData) *
* Now under function Render() in GameScreen.as:

var m:Matrix = new Matrix();

for(var i:int = 0; i< tiles.length; i++){
for(var j:int =0; j < tiles[0].length; j++) {

/I FILL IN LATER
}

m.tx = 0;
m.ty += tileSize;

}

* The nested for loops will access each entry in tiles Array

==
(.\.__::
—

« We will now fill in /FILL IN LATER
* In the for loop: for(int j:0; j < tiles[0].length; j++):

if(tiles[i][j] >= 0 && tiles]i][j] < 10) {
Renderer.draw(lImgAccessor.getimg("floor _tiles", tiles]i][j]), m);

}

else if(tiles[i][j] >= 10 && tiles]i][j] < 20) {
m.ty -= depth;
// 1 added a) after 10
Renderer.draw(lImgAccessor.getimg(“solid_tiles” tiles]i][j]-10),m);
m.ty += depth;

}

m.tx += tileSize; // sorry | forgot this

&

Now go ahead and click on the blue triangle next to “Debug” at top

After an ugly now loading screen, you will see the two dimensional array
stored in data.json rendered on the screen

To manipulate the stage data, go to data.json and under “stages” , go to
the stage object with “id”: 1, and you can change the tiles array in “tiles”

When you change “00” to “10”, you will see a solid tile rendered at that
position corresponding to the tile array

Next week (probably), | will be going over rendering a player tank on to the
screen and controlling it, and collision detection between our player tank
and the rendered tiles.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

